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Abstract

A process ∆ is regular if it is bisimilar to a process ∆′ with finitely
many states. We prove that regularity of normed PA processes is
decidable and we present a practically usable polynomial-time algo-
rithm. Moreover, if the tested normed PA process ∆ is regular then
the process ∆′ can be effectively constructed. It implies decidability
of bisimulation equivalence for any pair of processes such that one
process of this pair is a normed PA process and the other process has
finitely many states.

1 Introduction

We consider the problem of deciding regularity of normed PA processes. A
process ∆ is regular if there is a process ∆′ with finitely many states such
that ∆ ∼ ∆′. Finite-state processes have been intensively studied in the last
decades (see e.g. [Mil89]). Almost all interesting properties are decidable for
finite-state processes. Moreover, designed algorithms are practically usable.

This is no more true if one moves to process classes which contain also
processes with infinitely many states (up to bisimilarity). Some problems
can remain decidable—for example, bisimilarity is known to be decidable for
BPA (see [BBK87, Cau88, Gro91, HS91, CHS92]) and BPP (see [CHM93])
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processes. The same problem becomes undecidable for labelled Petri nets (see
[Jan94]). But even if a given property is decidable, the algorithm is usually
not interesting from the practical point of view due to its complexity. Before
running a complex algorithm, it is a good idea to ask whether the process
we are dealing with can be replaced with some equivalent (bisimilar) process
with finitely many states. If so, we can usually run a much more efficient
algorithm. Natural questions are, whether the regularity is decidable for a
given class of processes and whether the equivalent finite-state process can
be effectively constructed.

Mauw and Mulder showed in [MM94] that “regularity” of BPA processes
is decidable. The quotes are important here because Mauw and Mulder used
the word regularity in a different sense—a BPA process is “regular” if each of
its variables denotes a regular process. This notion is thus strongly dependent
on BPA syntax. It is not clear how to define “regularity” e.g. for Petri nets.
However, with a help of this result one can easily conclude that regularity is
decidable for normed BPA processes (see [Kuč95]). A similar result holds for
normed BPP processes (see [Kuč95]). Both algorithms are polynomial and
easy to implement.

A recent result of Esparza and Jančar [EJ96] says that regularity is decid-
able for labelled Petri nets. The algorithm is obtained by a combination of
two semi-decidability results and hence there are no complexity estimations.
Furthermore, Burkart, Caucal and Steffen showed in [BCS96] that regularity
is decidable for all BPA processes.

An interesting related problem is decidability of various behavioural equiv-
alences and preorders for pairs of processes such that one process of this pair
is regular. For example, Jančar and Moller proved in [JM95] that bisimi-
larity is decidable for a pair of labelled Petri nets provided one net of this
pair is bounded (regular). The same result holds for trace equivalence and
simulation equivalence.

In this paper we prove that regularity is decidable for normed PA pro-
cesses. PA processes appeared as a natural subclass of ACP processes (see
[BW90]). It is strictly greater than the union of normed BPP and normed
BPA processes and it is incomparable with the class of labelled Petri nets.
Our regularity test for normed PA processes is of polynomial time complex-
ity. Moreover, if the tested normed PA process is regular then we can also
construct a bisimilar finite-state process—and therefore we can also decide
bisimilarity for pairs of processes such that one process of this pair is a
normed PA process and the other has finitely many states. The problem of
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decidability of bisimulation equivalence for (normed) PA processes is open,
hence this result can be seen as the first small step towards the solution.

2 Basic definitions

2.1 PA processes

Let Act = {a, b, c, . . .} be a countably infinite set of atomic actions. Let
Var = {X,Y, Z, . . .} be a countably infinite set of variables such that Var ∩
Act = ∅. The class of recursive PA expressions is defined by the following
abstract syntax equations:

EPA ::= a | X | EPA.EPA | EPA‖EPA | EPATEPA | EPA + EPA

Here a ranges over Act and X ranges over Var . The symbol Act∗ denotes
the set of all finite strings over Act.

As usual, we restrict our attention to guarded expressions. A PA expres-
sion E is guarded if every variable occurence in E is within the scope of an
atomic action.

A guarded PA process is defined by a finite family ∆ of recursive process
equations

∆ = {Xi
def
= Ei | 1 ≤ i ≤ n}

where Xi are distinct elements of Var and Ei are guarded PA expressions,
containing variables from {X1, . . . , Xn}. The set of variables which appear
in ∆ is denoted by Var(∆).

The variable X1 plays a special role (X1 is sometimes called “the leading
variable”)—it is a root of a labelled transition system, defined by the process
∆ and following rules:

a
a
→ ε

E
a
→ E ′

E.F
a
→ E ′.F

E
a
→ E ′

E + F
a
→ E ′

F
a
→ F ′

E + F
a
→ F ′

E
a
→ E ′

E‖F
a
→ E ′‖F

F
a
→ F ′

E‖F
a
→ E‖F ′

E
a
→ E ′

ETF
a
→ E ′‖F

E
a
→ E ′

X
a
→ E ′

(X
def
= E ∈ ∆)

The symbol ε denotes the empty expression with usual conventions: ε‖E = E,
E‖ε = E, ε.E = E, εTE = E and ETε = E. Nodes of the transition system
generated by ∆ are PA expressions, which are often called states of ∆, or
just “states” when ∆ is understood from the context. We also define the
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relation w
→* where w ∈ Act∗ as the reflexive and transitive closure of a

→ (we
often write E →∗ F instead of E w

→* F if w is irrelevant). Given two states
E,F , we say that F is reachable from E, if E →∗ F . States of ∆ which are
reachable from X1 are said to be reachable.

2.1.1 Bisimulation

The equivalence between process expressions (states) we are interested in
here is bisimilarity [Par81], defined as follows:

Definition 1. A binary relation R over process expressions is a bisimulation
if whenever (E,F ) ∈ R then for each a ∈ Act

• if E a
→ E ′, then F a

→ F ′ for some F ′ such that (E ′, F ′) ∈ R

• if F a
→ F ′, then E a

→ E ′ for some E′ such that (E ′, F ′) ∈ R

Processes ∆ and ∆′ are bisimilar, written ∆ ∼ ∆′, if their leading variables
are related by some bisimulation.

2.1.2 Normed processes

An important subclass of PA processes can be obtained by an extra restriction
of normedness. A variable X ∈ Var(∆) is normed if there is w ∈ Act∗ such
that X w

→* ε. In that case we define the norm of X, written [X], to be the
length of the shortest such w. Thus [X] = min{length(w) | X

w
→ * ε}. A

process ∆ is normed, if all variables of Var(∆) are normed. The norm of ∆
is then defined to be the norm of X1.

2.1.3 A normal form for PA processes

Before we present a normal form for PA processes, we need to introduce the
set of VPA expressions defined inductively as follows:

1. The empty expression ε is a VPA expression.

2. Each variable X ∈ Var is a VPA expression.

3. If α, β are nonempty VPA expressions, then α.β, α‖β and αTβ are
VPA expressions.
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4. Each VPA expression can be constructed using the rules 1, 2 and 3 in
a finite number of steps.

We use Greek letters α, β, . . . to range over VPA expressions. The set of
VPA expressions which contain only variables from Var(∆), where ∆ is a
PA process, is denoted VPA(∆). Finally, the set of variables which appear
in a VPA expression α is denoted Var(α).

Definition 2. A PA process ∆ is said to be in normal form if all its equations
are of the form

Xi
def
=

ni∑
j=1

aijαij

where 1 ≤ i ≤ n, ni ∈ N , aij ∈ Act and αij ∈ VPA(∆). Moreover, we also
require that for each Xi, 1 ≤ i ≤ n there is a reachable state α ∈ VPA(∆)
such that Xi ∈ Var(α).

Any PA process can be effectively presented in normal form (see [BEH95]).
From now on we assume that all PA processes we are working with are pre-
sented in normal form. This justifies also the assumption that all reachable
states of a PA process ∆ are elements of VPA(∆).

2.2 Regular processes

The main question considered in this paper is whether regularity of normed
PA processes is decidable. The next definition explains what is meant by the
notion of regularity.

Definition 3. A process ∆ is regular if there is a process ∆′ with finitely
many states such that ∆ ∼ ∆′.

It is easy to see that a process is regular iff it can reach only finitely many
states up to bisimilarity. In [Mil89] it is shown that regular processes can be
represented in the following normal form:

Definition 4. A regular process ∆ is said to be in normal form if all its
equations are of the form

Xi
def
=

ni∑
j=1

aijXij

where 1 ≤ i ≤ n, ni ∈ N , aij ∈ Act and Xij ∈ Var(∆).
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Thus a process ∆ is regular iff there is a regular process ∆′ in normal form
such that ∆ ∼ ∆′. In the next section we show that regularity of normed PA
processes is decidable. Moreover, if a given normed PA process ∆ is regular
then the process ∆′ can be effectively constructed.

Lemma 1. A process ∆ is not regular iff there is an infinite path X1 = α0
a0→

α1
a1→ α2

a2→ · · · such that αi 6∼ αj for i 6= j.

Proof: It can be found e.g. in [Kuč95].

3 Decidability of regularity for normed PA
processes

3.1 The inheritance tree

Let ∆ be a normed PA process. The aim of the following definition is to
describe all variables in a state α ∈ VPA(∆) which can potentially emit an
action:

Definition 5. Let ∆ be a normed PA process. For each α ∈ VPA(∆) we
define the set FIRE (α) in the following way:

FIRE (α) =


∅ if α = ε
{X} if α = X
FIRE (β1) if α = β1.β2 or α = β1Tβ2

FIRE (β1) ∪ FIRE (β2) if α = β1‖β2

The following function is needed in some proofs of this section:

Definition 6. The function Length : VPA → N ∪ {0} returns for each
α ∈ VPA the number of variables contained in α, distinguishing multiple
occurence of the same variable.

Lemma 2. Let ∆ be a normed PA process, α ∈ VPA(∆). Then for each
X ∈ Var(α) there is β ∈ VPA(∆) such that α→∗ β and X ∈ FIRE(β).

The following concept stands behind many constructions of this paper:
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Definition 7. For each α ∈ VPA we define the set Tail(α) ⊆ Var in the
following way:

Tail(α) =


{X} if α = X
∅ if α = ε or α = β‖γ where β 6= ε 6= γ
Tail(γ)− Var(β) if α = β.γ or α = βTγ where β 6= ε 6= γ

Remark 1. The set Tail(α) provides two important pieces of information:

1. If X ∈ Var(α) such that X 6∈ Tail(α), then there is α′ such that
α→∗ α′, X ∈ FIRE (α′) and Length(α′) ≥ 2.

2. If X ∈ Tail(α), then the only occurence of X in α can become active
(i.e. X can emit an action) after all other variables disappear.

Definition 8. Let ∆ be a normed PA process. A variable X ∈ Var(∆) is
growing if there is α ∈ VPA(∆) such that X →∗ α, X ∈ FIRE(α) and
Length(α) ≥ 2.

Lemma 3. Let ∆ be a normed PA process. The problem whether Var(∆)
contains a growing variable is decidable in polynomial time.

Proof: We define the binary relation GROW on Var(∆) in the following
way:

(X,Y ) ∈ GROW def
⇐⇒ ∃β ∈ VPA(∆) such that X →∗ β where

Length(β) ≥ 2 and Y ∈ FIRE (β).

Clearly Var(∆) contains a growing variable iff there is X ∈ Var(∆) such
that (X,X) ∈ GROW . We show that the relation GROW can be effectively
constructed in polynomial time. We need two auxiliary binary relations on
Var(∆):

X ; Y
def
⇐⇒ there is a summand aα in the defining equation for X in ∆

such that Length(α) ≥ 2, Y ∈ Var(∆) and Y 6∈ Tail(α)

X ↪→ Y
def
⇐⇒ there is a summand aα in the defining equation for X in ∆

such that Y ∈ Var(α).

It is easy to prove that GROW =↪→∗ . ; . ↪→∗ where ↪→∗ denotes the
reflexive and transitive closure of ↪→. Moreover, the composition ↪→∗ . ;
. ↪→∗ can be constructed in polynomial time.
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Let ∆ be a normed PA process. If ∆ is not regular then there is (due to
Lemma 1) an infinite path P of the form X1 = α0

a0→ α1
a1→ α2

a2→ · · · such
that αi 6∼ αj for i 6= j. To be able to examine properties of P in a detail,
we define for P the corresponding inheritance tree, denoted ITP . The aim of
this construction is to describe the relationship between variables which are
located in successive states of P . The way how ITP is constructed is similar
to the construction of a derivation tree for a word w ∈ L(G) where L(G) is a
language generated by a context-free grammar G. We start with an example
which shows how ITP looks for a given prefix of P .

Example 1. Let ∆ be a normed PA process given by the following set of
equations:

{ X
def
= b + a(Y.(Z‖Y )), Y

def
= c + b(Y.Z.X), Z

def
= a + a((Z‖Y ).X) }

Let P = X
a
→ Y.(Z‖Y )

c
→ Z‖Y

a
→ ((Z‖Y ).X)‖Y

b
→ ((Z‖Y ).X)‖(Y.Z.X) · · ·.

If we draw a fragment of ITP , we get the following picture:

X
}}{{{
{{
�� !!CC

CCC

Y Z

��

Y

��
Z

vvnnnn
nnnn

nn
}}{{{
{{
��

Y

��
Z

��

Y

��

X•
��

Y
�� ��?

???

((PPP
PPPP

PPP

Z Y X Y Z X•

Nodes of ITP are labelled with variables of Var(∆). The state αi, i ∈ N∪{0}
of P corresponds to the set of nodes in ITP which have the distance i from
the root of ITP (the root itself has the distance 0). This set of nodes is called
the ith Level of ITP . Each transition αi

ai→ αi+1 is due to a single variable
A ∈ Var(αi) and a transition A

ai→ γ where the expression aiγ is a summand
in the defining equation for A in ∆ (see Definition 2). Moreover, αi+1 can
be obtained from αi by replacing one occurence of A with γ (here we must
distinguish between multiple occurence of the variable A within the state αi).
We call the variable A the active variable of αi and the transition A

ai→ γ the
step of αi. The nodes of ITP which correspond to active variables are called
active. Each active node is placed within a box in the previous example.
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Nodes and edges of ITP are defined inductively—we define all nodes in
the Level i+ 1 together with their labels, using the nodes from the Level i.
Moreover, we also define all edges between nodes in these two levels.

1. i=0: There is just one node N in the Level 0 — the root, labelled X1.

2. induction step: Let us suppose that nodes of Level i have been al-
ready defined. For each node U from Level i we define its immediate
successors. There are two possibilities:

• U is not active: Then U has just one immediate successor whose
label is the same as the label of U .

• U is active: Let A ai→ γ be the step of αi and let n = Length(γ).
The node U (whose label is A) has n immediate successors (if
n = 0 then U is a leaf). The label of the lth immediate successor
of U is the lth variable from γ, reading γ from left to right. Here
l ranges from 1 to n. As we cannot afford to lose the information
about the structure of γ completely, we distinguish the case when
Tail(γ) = {B} where B ∈ Var(∆). Then we say, that the last
successor of U is a tail of U . In the example above, tails are
marked with a black dot.

A node of ITP which has at least two immediate successors is called a branch-
ing node. Branching nodes are especially important because their labels are
potential candidates to be growing. This is the basic idea which stands be-
hind the notion of the Allow set.

Definition 9. For each node U of ITP we define the set Allow(U) ⊆ Var(∆)
in the following way:

• If U is the root of ITP , then Allow(U) = Var(∆).

• If U is an immediate successor of a node V , then

– If V is not branching, then Allow(U) = Allow(V ).

– If V is branching and U is not a tail of V, then Allow(U) =
Allow(V )− {Label(V )}.

– If V is branching and U is a tail of V , then Allow(U) = Allow(V ).
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The next lemma explains what is the relationship between a node U and
the set Allow(U):

Lemma 4. Let U be a node of ITP . If Label(U) 6∈ Allow(U) then Label(U)
is a growing variable.

Now we prove the first main theorem of this paper:

Theorem 1. A normed PA process ∆ is regular iff Var(∆) does not contain
any growing variable.

Proof:
(⇒) : Let X ∈ Var(∆) be a growing variable. We show that ∆ can reach
infinitely many pairwise non-bisimilar states. To do this, it suffices to show
that for any k ∈ N there is a reachable state α ∈ VPA(∆) such that [α] ≥ k
(bisimilar processes must have the same norm). As X is growing, there
is γ ∈ VPA(∆) such that X →∗ γ, X ∈ FIRE (γ) and Length(γ) ≥ 2.
Moreover, there is a reachable state β1 ∈ VPA(∆) such that X ∈ FIRE (β1)
(it follows from the Definition 2 and Lemma 2). Thus β1 →∗ β2 where
β2 is obtained from β1 by replacing one occurence of X with γ. As X ∈
FIRE (β1), each variable from FIRE (γ) belongs to FIRE (β2)—hence X ∈
FIRE (β2). Moreover, Length(β2) > Length(β1) because Length(γ) ≥ 2. As
X ∈ FIRE (β2), we can repeat this construction producing β3 and so on.
As Length(βi) > Length(βj) for each i > j, the state βk has the property
Length(βk) ≥ k, thus [βk] ≥ k.

(⇐) : This part of the proof is more complicated. The basic scheme is similar
to the method which was used by Mauw and Mulder in [MM94] and can be
described in the following way: We need to show that if ∆ is not regular
then there is a growing variable X ∈ Var(∆). As ∆ is not regular, there is
(due to Lemma 1) an infinite path P of the form X1 = α0

a0→ α1
a1→ α2

a2→ · · ·
such that αi 6∼ αj for i 6= j. We show that if Var(∆) does not contain any
growing variable, then there are i 6= j such that αi ∼ αj . It contradicts the
assumption above—hence Var(∆) contains at least one growing variable.

Let ITP be the inheritance tree for the path P . To complete the proof
we need to divide ITP into more manageable units called blocks.

Levels of ITP which contain just one node are called delimiters of ITP .
A block of ITP is a subgraph S of ITP composed of:

1. all nodes and edges between two successive delimiters i and j where
i < j. The only node of Level i is called the opening node of S and the
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only node of Level j is called the closing node of S. Out-going edges
of the closing node and in-going edges of the opening node are not a
part of S.

2. all nodes below the delimiter i (including Level i), if there is no delimiter
j with j > i. The only node of Level i is called the opening node of S.
In-going edges of the opening node are not a part of S.

As Level 0 is a delimiter of ITP , we can view ITP as a vertical sequence of
blocks.

The width of ITP is defined to be the least n ∈ N such that the cardinality
of ith Level of ITP is less or equal n for each i ∈ N ∪ {0}. If there is no such
n, we define the width of ITP to be ∞.

Similarly, if S is a block of ITP , the width of S is the least n ∈ N such
that the cardinality of each Level which is a part of S is less or equal n. If
there is no such n, we define the width of S to be ∞.

Furthermore, we define the branching degree of ITP to be the least n ∈ N
such that each node U of ITP has at most n immediate successors. The
branching degree of ITP is always finite (it actually depends only on ∆—
let M be the set of all VPA expressions, which appear in defining equa-
tions of ∆ (see Definition 2). The branching degree of ITP is then at most
max{Length(β) | β ∈M}). We denote the branching degree of ITP by D in
the rest of this proof.

Each node U of ITP defines its associated subtree, rooted by U . This sub-
tree is denoted Subtree(U). Although the notions of block, width, branching
node, tail, etc. were originally defined for ITP , they can be used also for any
Subtree(U) of ITP in an obvious way.

We prove that if Var(∆) does not contain any growing variable, then
for each node U of ITP the Subtree(U) has the width at most Dn−1, where
n = card(Allow(U)).

We proceed by induction on n = card(Allow(U)): First, if Var(∆) does
not contain any growing variable, then Subtree(U) does not contain any node
U with Allow(U) = ∅. This is due to Lemma 4—clearly Label(U) 6∈ ∅, thus
Label(U) would be a growing variable. Hence n is at least 1.

1. n=1: Let Allow(U) = {X}. We show that Subtree(U) does not con-
tain any branching node. Let us assume the opposite. Then there
is a branching node V in Subtree(U) with Allow(V ) = {X}, thus
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Label(V ) = X. As V is branching, at least one immediate succes-
sor V ′ of V has the property Allow(V ′) = Allow(V )−{Label(V )} = ∅.
Hence Label(V ′) is a growing variable and we have a contradiction.
As Subtree(U) does not contain any branching node, the width of
Subtree(U) is 1 = Dn−1.

2. induction step: Let card(Allow(U)) = n. We prove that each block of
Subtree(U) has the width at most Dn−1. Let S be a block of Subtree(U)
and let V be its opening node. Clearly card(Allow(V )) ≤ n. If V has
no successors then the width of S is 1. If V is not branching then the
only immediate succesor of V is a closing node of S, thus the width of
S equals 1. If V is branching, there are two possibilities:

• V does not have a tail. Then each immediate successor V ′ of V has
the property card(Allow(V ′)) ≤ n− 1. By induction hypothesis,
the width of Subtree(V ′) is at most Dn−2. As V can have at
most D immediate successors, the width of Subtree(V ) is at most
D.Dn−2 = Dn−1. Thus the width of S is also at most Dn−1.

• V has a tail T . Each immediate successor V ′ of V which is different
from T has the property card(Allow(V ′)) ≤ n− 1. Hence we can
use the induction hypothesis for each such V ′. The only problem
is the node T . We show, that if T has a branching successor T ′

then the node T ′ is either the closing node of the block S or it is
a successor of the closing node of the block S—hence the block S
can have the width at most (D − 1).Dn−2 + 1.
Suppose that T has a branching successor T ′. Branching nodes
are always active—thus T has at least one active successor. Let
W be the active successor of T which has the least distance from
T . The node T ′ is clearly either the node W (if W is branching),
or a successor of W . We show, that the node W is the closing
node of the block S. But it follows directly from the definition of
the tail (see Remark 1)—as W is active, there are no successors
of V in the level of W except the node W itself.

We have just proved that if Var(∆) does not contain any growing variable
then the width of ITP is at most Dcard(Var(∆))−1. Hence each element αi
of P has the property Length(αi) ≤ Dcard(Var(∆))−1. As Var(∆) is finite,
there are only finitely many VPA(∆) expressions whose Length is at most
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Dcard(Var(∆))−1. Therefore there are i, j ∈ N ∪ {0}, i 6= j, such that αi = αj
and thus αi ∼ αj .

3.2 A construction of the process ∆′ in normal form

In this section we show that if a given normed PA process ∆ is regular, then
∆ can be effectively transformed into a regular process ∆′ in normal form
such that ∆ ∼ ∆′. In order to simplify the construction, we identify several
VPA expressions:

Definition 10. Let ≡ be the smallest congruence relation over VPA expres-
sions such that the following laws hold:

• associativity for sequential composition (the ‘.’ operator).

• associativity and commutativity for parallel composition (the ‘‖’ opera-
tor).

The algorithm is based on the following fact:

Lemma 5. A normed PA process ∆ is regular iff ∆ can reach only finitely
many states up to ≡.

The algorithm finds all reachable states α ∈ VPA(∆) of ∆ up to ≡. For each
such α a new variable and a new defining equation is added to ∆′.

The relationship between variables of ∆′ and reachable states of ∆ is
described by the set MEM ⊆ Var × VPA(∆). This set is initialised to
MEM = {[Y1, X1]} where X1 is the leading variable of ∆ and Y1 is the
leading variable of ∆′.

An element [Y, α] of MEM is said to be undefined if there is no defining
equation for Y in ∆′. The algorithm chooses any undefined element of MEM
and adds a new defining equation for Y to ∆′, possibly producing new unde-
fined elements of MEM. The algorithm stops when MEM does not contain
any undefined elements.

Let [Y, α] be an undefined element of MEM. The defining equation for Y
in ∆′ is obtained by unfolding α. The function Unfold is defined as follows:

Unfold(α) =


∑
aijαij if α = Xj and Xj

def
=
∑
aijαij ∈ ∆

Distr(Unfold(β1), β2) if α = β1.β2

Expand1 (β1, β2) if α = β1‖β2

Expand2 ((β1, β2) if α = β1Tβ2

13



where Expand1 , Expand2 andDistr are defined as follows (functions Expand1
and Expand2 are instances of the CCS expansion law (see [Mil89]) and the
function Distr is a variant of the right distributivity law (see [BW90])):

Expand1 (β1, β2) =
∑
{ a(β′1‖β2) : β1

a
→ β ′1, a ∈ Act}

+
∑
{ a(β1‖β ′2) : β2

a
→ β ′2, a ∈ Act}

Expand2 (β1, β2) =
∑
{ a(β′1‖β2) : β1

a
→ β ′1, a ∈ Act}

Distr(
∑
aijαij , β) =

∑
aij(αij.β)

The function Unfold returns an expression of the form

n∑
i=1

aiαi

where n ∈ N , ai ∈ Act and αi ∈ VPA(∆). Now the algorithm replaces each
αi with a single variable. There are two possibilities: if the setMEM contains
an element [Z, β] such that αi ≡ β, then the expression αi is replaced with
Z. Otherwise, the expression αi is replaced with a new variable W and the
pair [W,αi] is added to MEM. After the replacement of each αi the defining
equation for Y is added to ∆′.

It is easy to see that each variable of ∆′ corresponds to a reachable state
of the process ∆′. Hence the algorithm has to stop (due to Lemma 5).

Example 2 Let ∆ be a normed PA process given by the following set of
equations:

X
def
= b + a(Y ‖Z).X

Y
def
= c + a(Z‖(Z.Z))

Z
def
= c

The process ∆′ is constructed in the following way (the first two elements
of each line constitute a member of MEM, the third element is a result of

14



Unfold and the last element is the defining equation):

A = X = b + a(Y ‖Z).X = b + aB
B = (Y ‖Z).X = a(Z‖(Z.Z)‖Z).X + c(Z.X) + c(Y.X) = aC + cD

+ cE
C = (Z‖(Z.Z)‖Z).X = c((Z‖Z‖Z).X) + c((Z‖(Z.Z)).X) = cF + cG
D = Z.X = cX = cA
E = Y.X = cX + a((Z‖(Z.Z)).X) = cA + aG
F = (Z‖Z‖Z).X = c((Z‖Z).X) = cH
G = (Z‖(Z.Z)).X = c(Z.Z.X) + c((Z‖Z).X) = cI + cH
H = (Z‖Z).X = c(Z.X) = cD
I = (Z.Z.X) = c(Z.X) = cD

Using this algorithm it is possible to decide bisimilarity for any pair of pro-
cesses [∆1,∆2], where ∆1 is a normed PA process and ∆2 is a regular process.
First, we check whether ∆1 is regular. If not, then ∆1 6∼ ∆2. Otherwise,
we construct the regular process ∆′1 in normal form such that ∆1 ∼ ∆′1 and
check whether ∆′1 ∼ ∆2.

Theorem 2. Bisimulation equivalence is decidable for any pair of processes
such that one process of this pair is a normed PA process and the other process
is regular.

4 Conclusions

We proved that regularity of normed PA processes is decidable in polynomial
time. As our result is constructive, we obtained also decidability of bisimu-
lation equivalence for any pair of processes such that one process of this pair
is a normed PA process and the other process is regular.

A natural question is whether it is possible to replace the pure merge
operator (‘‖’) with another form of parallel composition without the loss of
decidability of regularity. It can be easily shown that presented results are
still valid if we replace the merge operator with the full parallel operator of
CCS (which allows synchronisations on complementary actions). However,
if we use e.g. the operator ‘‖A’ of CSP (which can force synchronisations),
regularity becomes undecidable—see [Kuč95] for details.

An interesting open problem is whether our result can be extended to
the class of all (not necessarily normed) PA processes. Another related
open problem is the decidability of bisimulation equivalence in the class of
(normed) PA processes.
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