RTIS Iy,
o FO@

éé &
rgs ass

Faculty of Informatics
Masaryk University

NekFA
®§$ Cuy 2,
S
N 3{0@4

>

T/4

Word Hy-phen-a-tion by Neural Networks

by

Pavel Smrz
Petr Sojka

FI MU Report Series FIMU-RS-96-04

Copyright (©) 1996, FI MU

August 1996

Word Hy-phen-a-tion by Neural Networks

Pavel Smrz and Petr Sojka

Faculty of Informatics, Masaryk University Brno
Botanickéa 68a, 602 00 Brno, Czech Republic

E-mail: {smrz,sojka}@fi.muni.cz, @& ++42-5-41512{362,352}

Abstract

We are discussing our experiments we made when learning feedforward neu-
ral network to find possible hyphenation points in all words of given language.
Neural networks show to be a good device for solving this difficult problem.
The structure of the multilayer neural network used is given, together with
a discussion about training sets, influence of input coding and results of ex-
periments done for the Czech language. We end up with pros and cons of our
approach tested—hybrid architecture suitable for a multilingual system.
Keywords: neural networks, hyphenation, back propagation

1 Introduction

“The invention of the alphabet was one of the greatest advances in the
history of civilization. However, the ancient Pheenicians probably did not
anticipate the fact that, centuries later, the problem of word hyphenation
would become a major headache for computer typesetters all over the

world.” (Liang, 1983) (Liang 1983, page 39)

The problem of finding all permissible hyphenation points in all words
of a given language has been tackled for decades. Most of the approaches
used are deterministic. A rule-driven hyphenation algorithm for English
was implemented in TeX78 (Liang 1981). The method was improved by
Liang (Liang 1983, Knuth 1986) for use in TgX82. It is based on the general-
ization of the prefix, suffix and vowel-consonant-consonant-vowel rules. The
program PATGEN (Liang and Breitenlohner 1991) enables the process of pattern
generation from a set of already hyphenated words to be automated. This al-
gorithm or its derivatives are used in many DTP systems like troff (Emerson
and Paulsell 1987), Lout, QuarkXpress, 3B2 and many others today.

Liang’s algorithm performs well for non flexive languages with small
number of compounds, but there is still a lack of good methods for other lan-
guages, especially for flexive Slavonic languages. Sojka and Sevecek (Sojka
1995, Sojka and Sevecek 1995) state that in average 20-30 inflexions can be
derived from one word stem by changing the suffix added and this number
can be almost dubled if negatives are formed from many words (adjectives,
verbs, adverbs, some nouns) by adding the prefix ne. Thus, from a 170,000
stem word-list about 5,000,000 inflexions may be generated.

For multilingual documents usually several separate algorithms for ev-
ery language used are needed, even if the languages are dialects only, leading
to high computer memory demands. Typesetting in narrow columns brings
the necessity to find all possible hyphenation points allowed.

From the DTP world and prominent publishers another need is heard:
several classes of hyphenation points are called for, to make a distinction e.g.
between valid and not recommended, but possible one, as published in (R. E.
Allen 1990).

This leads to the stochastic approaches rather than deterministic ones —
Brunak and Lautrup (S. Brunak and B. Lautrup 1990) shows that a neural net-
work is likely to be a way leading quickly to the working solution.

2 Tackling the Hyphenation Problem with Neural Networks

2.1 Hyphenation of Czech Words

We performed our experiments with multilayer neural networks trained
on hyphenation for Czech language. The problem of word hyphenation in
Czech is rather complex. Hyphenation rules for Czech language are described
in (Zdenék Hlavsa et al 1993) and (Haller 1956). In (Haller 1956) also a list of
exceptions is given including about 10,000 words. Czech language has sylla-
ble hyphenation with “ethymological” exceptions. Hyphenation is preferred
between a prefix and the stem and on the boundary of compound words.

2.2 Neural Net Architecture

The architecture of the networks used in the experiments is similar to that of
NETtalk (Sejnowski and Rosenberg 1987). The input of the network is a series
of seven consecutive letters from one of the training words. The central letter
In this sequence is the “current” one for which the output is to be produced.
Three letters on either side of this central letter provide context that helps to
determine the hyphenation point. Individual words are moved through the
window so that each letter in the word with the exception of the last two is

2

seen in the central position. Blanks are added before and after the word as
needed.

One type of tested networks uses unary encoding. For each of the seven
letter positions in the input, the network has a set of 43 input units: one for
each of 41 letters in Czech, one for letters from other languages, and one for
blank. Thus, there are 43 x 7 = 301 input units. Other tested type uses real
numbers rather than binary ones for encoding the input. The letters are coded
in the form of numbers from the set {0.02,0.04, ...,0.98}. The exact coding of
a particular letter will be given later.

The networks have one or two output neurons. In the first case, the mean-
ing of the output value is 0 for ‘do not hyphenate’ and 1 for ‘insert hyphen-
ation point’. In the second case the output 0 1 means ‘hyphenate’, 1 0 ‘do not
hyphenate’.

2.3 Training Sets Used

Two sets of words with hyphenation points were used for the generation
of training patterns. The first one contained 169,888 hyphenated words. The
problem with this set was considerably large number of errors. There are two
types of errors. The first type is probably the worse one—the hyphen is placed
in the position where the word cannot be hyphenated. In case of errors of the
second type the algorithm is not able to find an allowed hyphenation point.
These errors are a big complication of typesetting in narrow columns.

The second set consisted of 78,809 hyphenated words starting with the
letter m. The amount of errors was less than in the first set. The number of errors
of the first type was negligible and the relative number of errors of the second
type was less too. A subset of 1000 words was chosen in which the errors were
eliminated.

3 Experiments with the First Training Set

For the first group of experiments the networks with the topologies 301-30-1
and 301-100-1 were employed. In both cases each layer was completely inter-
connected with the next one. The first set of hyphenated words was used for
training. The set was divided into 170 parts each containing 1000 words. To-
tally, 1,581,183 training patterns were generated.

The network was trained with each part of the training set. The training
was carried out until the network error dropped below the value of 0.1 or until
100 cycles was reached. The learning rate was initially set to the value of 0.7.
Then it was stepwise decreased in each training by 0.1 to the final value of 0.3
which was used for the rest of learning.

Naturally, this learning process was extremely time consuming. The
training of the network 301-30-1 took about 17 days of user time on Sun
SparcStation 10 not taking into account the time for generating patterns. For
the training of the network 301-100-1 the supercomputer Silicon Graphics
POWER Challenge L was used. Despite its computing power the training took
about 18 days of user time.

The results of the experiments described above are summarised in Ta-
bles 1 and 2. Although in the latter case the network contained more than
three-fold number of connections, the amount of wrong patterns was almost
the same. It is obvious that, in this case, the performance of the network cannot
be significantly improved by increasing the number of hidden layer neurons
only.

STATISTICS (1581183 patterns) STATISTICS (1581183 patterns)
wrong: 3.43%, (54282 patterns) || wrong: 3.26% (51599 patterns)
right:96.57% (1526901 patterns) || right:96.74), (1529584 patterns)

Table 1: Results of learning of the net- Table 2: Results of learning of the net-
work 301-30-1 with 1,581,183 training work 301-100-1 with 1,581,183 training
patterns patterns

As stated earlier, the biggest problem with the training of word hyphen-
ation is to obtain a good training set. It seems to be unrealistic to avoid all er-
rors but it is necessary to try to find patterns with the least number of wrongly
hyphenated words and with the maximum of correctly marked hyphenation
points. The file of 169,888 hyphenated words contained many errors. There-
fore, when the network was tested using this file, some correctly hyphenated
words were considered erroneous by the system. Remaining errors mainly oc-
curred in words which belong to the exceptions from hyphenation rules, espe-
cially in words taken over from foreign languages.

To test if a network can even learn all the exceptions from hyphenation
rules, all 54,282 training patterns wrongly hyphenated by the network 301-30-
1 were used as one big training set and presented to another network of the
type 301-30-1. Learning rate decreased stepwise from the value 0.8 to 0.2. After
100 cycles the network learned all but 4 training patterns which is an excellent
result.

4

4 The Influence of Input Coding: Use of Real Numbers

All the following experiments were carried out with the second file containing
78,809 hyphenated words beginning with the letter m. For most of experiments
a subset of 1000 words was used.

The experiments were performed with the networks with 7 input layer
neurons for 7 consecutive letters. Each letter was codded as a real number. In
the beginning, the codes of letters were assigned according to the alphabet (see
Table 3).

L a a b C ¢ d
0.02 | 0.04 | 0.06 | 0.08 | 0.10 | 0.12 | 0.14
d e é e f g h
0.16 | 0.18 | 0.20 | 0.22 | 0.24 | 0.26 | 0.28

| i | k I m n
030 | 0.32 | 0.34 | 0.36 | 0.38 | 0.40 | 0.42
n 0 0 p q r r
044 | 046 | 048 | 0.50 | 0.52 | 0.54 | 0.56
S § t t u a ¥
0.58 | 0.60 | 0.62 | 0.64 | 0.66 | 0.68 | 0.70
\Y; W X y y z Z

0.72 | 0.74 | 0.76 | 0.78 | 0.80 | 0.82 | 0.84

Table 3: Coding of letters according to the alphabet

The results of experiments with the network 7-30-9-2 are summarised in
Table 4. It is obvious that these results are not satisfactory as the network er-
ror is too high. The network wrongly hyphenated even often used words with
simple syllable hyphenation. It did not recognise the rules of making sylla-
bles, did not take into account which letters are vowels and which consonants.
Therefore, this approach proved to be inapplicable.

STATISTICS (8411 patterns)
wrong : 14.12 (1188 patterns)
right : 85.88 % (7223 patterns)

Table 4: Results of experiments with the network 7-30-9-2 and coding accord-
ing to Table 3

In order to improve the results of learning another coding of letters was
used. It is shown in Table 5. All the vowels in Czech were coded as small num-
bers in the range of (0.02,0.28), all the consonants except r and 1 as num-

5

bers from (0.50,0.98). Letters r and 1 are consonants but can make syllables in
Czech. Therefore, they were coded using using numbers 0.40 and 0.42 sepa-
rately from the other consonants. Blank was codded as 0.34, i.e. as a number
between code numbers of vowels and consonants.

7

a a e é € [|
0.02 | 0.04 | 0.06 | 0.08 | 0.10 | 0.12 | 0.14
0) u a ¥ y y

0.16 | 0.18 | 0.20 | 0.22 | 0.24 | 0.26 | 0.28

] r I
0.34 0.40 | 0.42

b C ¢ d
050 | 052 | 0.54 | 0.56

d f g h | k m
0.58 | 0.60 | 0.62 | 0.64 | 0.66 | 0.68 | 0.70
n n P q r S S
0.72 | 0.74 | 0.76 | 0.78 | 0.80 | 0.82 | 0.84
t t \Y W X z z

086 | 0.88 | 090 | 0.92 | 0.94 | 096 | 0.98

Table 5: Alternative coding of letters

The results of the experiments with the network 7-30-9-2 and the coding
described above are shown in Table 6. The comparison of results with both
coding alternatives is given in Figure 1.

STATISTICS (8411 patterns)
wrong : 3.41 % (287 patterns)
right : 96.59 7 (8124 patterns)

Table 6: Results of experiments with the network 7-30-9-2 and coding accord-
ing to Table 5

Information about the type of a letter (consonant or vowel) helped the
network to learn. The different coding of letters r and 1 also improved learn-
ing. The results with this network could be probably further improved by an-
other modification of coding letters. Many errors were caused by a special na-
ture of joined letters c and h. In Czech they both are used together as a two-
character symbol of one sound and, in fact, they form a sort of a single letter.
Thus, ¢ and h cannot be separated by a hyphen. A solution of this problem
may be to code joined c and h by a special number differing from the codes of
both single letters.

6

0 200 200 600 800 1000

Figure 1: Comparison of the results of experiments with the network 7-30-9-
2 using both coding alternatives. Upper curve: Coding according to Table 3.
Lower curve: Coding according to Table 5.

5 Comparison of Various Topologies

Next series of experiments was designed to compare the abilities of networks
with different topology. Networks 301-30-1, 301-60-1, 7-30-1, 7-30-9-2, and 7-
60-2 were compared. In case of networks with 7 input neurons the alternative
coding was used (as described in Table 5). Detailed description of results can
be found in (Smrz 1995).

No significant difference in learning performance was observed between
the networks 301-30-1 and 301-60-1. Similar result was obtained earlier using
the networks 301-30-1 and 301-100-1 and the other training set (see Section 3).

The results obtained with the network 301-30-1 are distinctly better than
those with networks consisting of a less number of neurons and synapses for
which different coding was necessary. On the other hand, this network needs
much more memory for storing weights.

Learning performance of a network is significantly influenced not only
by the number of hidden layer neurons but also the network topology. Us-
ing the network 7-30-9-2 with two hidden layers, better results were obtained
though the total number of neurons and connections was less than that of the
network 7-60-2 with only one hidden layer.

Next, the generalisation ability of the networks 7-30-9-2 and 301-30-1 was
studied. The networks were trained with the subset of 1000 words. Then the
whole set of 78,809 words was used for testing. The results are given in Tables 7
and 8. The percentage of wrongly hyphenated words can be considered very
low if the number of errors in the set used for testing is taken into account.

STATISTICS (648928 patterns) STATISTICS (648928 patterns)
wrong: 4.91% (31886 patterns) || wrong: 2.78% (18057 patterns)
right: 95.09% (647042 patterns) || right: 97.22) (630871 patterns)

Table 7. Generalisation ability of the Table 8: Generalisation ability of the
network 7-30-9-2 network 301-30-1

6 Syllable Hyphenation

Finally, it was tested how well a network would perform if only the type of
letters (consonants or vowels) was given. The network 7-30-1 was used. Con-
sonants were coded as 0, vowels as 1 and blank as 0.5. The results of these
experiments are given in Table 9. The results clearly show that the syllable hy-
phenation plays a dominant role in Czech language. However, as the error was
about 6%, it was obvious that if only the syllable hyphenation was included in
the algorithm, the results would be unsatisfactory.

8

STATISTICS (8411 patterns)
wrong : 6.08 % (511 patterns)
right : 93.92 % (7900 patterns)

Table 9: Results of experiments with the network 7-30-1 and consonant/vowel
coding

7 Discussion

The results obtained for Czech hyphenation are comparable to those showed
in (Sojka 1995, Sojka and Sevetek 1995) for classical approach. Testing the “syl-
lable hyphenation neural network’ on “close” languages (e.g. syllable ones),
preprocessed for accents, gives similar results. This fact allows to build a mod-
ular hybrid system, in which separate neural networks will be trained to cover
“close” languages, and hyphenation of words not covered by them will be
stored in the exception tries in the PATGEN fashion. Such a system is able not
only perform well if properly tuned up—in addition— it can be trained to give
a measure of suitability of hyphenation points found for the [DTP] system.

8 Conclusion and Acknowledgements

We showed that solving word hyphenation problem with neural networks is
possible and that generalization abilities of neural networks allows to build
a working system for the task given. Combining with exception lists, we can
build a quality system which is able to store hyphenation points for several
languages with moderate memory needs.

We acknowledge the possibility to use computer facilities of Supercom-
puting Centre Brno and support of FRVS grant 0361/96.

References

Emerson, S. L. and Paulsell, K.: 1987, troff Typesetting for uxix™ Systems,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Haller, J.: 1956, Jak se déli slova (How the words get hyphenated), Statni pedagog-
ické nakladatelstvi Praha.

Knuth, D. E.: 1986, The TeXbook, Vol. A of Computers and Typesetting, Addison-
Wesley, Reading, MA, USA.

Liang, F. and Breitenlohner, P.: 1991, PATtern GENeration program for the TgX82
hyphenator, Electronic documentation of PATGEN program version 2.0
from unix TEX distribution at ftp.cs.umb. edu.

Liang, F. M.: 1981, TeX and hyphenation, TUGboat 2(2), 19-20.

Liang, F. M.: 1983, Word Hy-phen-a-tion by Com-put-er, PhD thesis, Department
of Computer Science, Stanford University.

R. E. Allen: 1990, The Oxford Spelling Dictionary, Vol. Il of The Oxford Library of
English Usage, Oxford University Press.

S. Brunak and B. Lautrup: 1990, Neural Networks: Computers with Intuition,
World Scientific, Singapore.

Sejnowski, T. J. and Rosenberg, C. R.: 1987, Parallel networks that learn to pro-
nounce english text, Complex Systems 1, 145-168.

Smrz, P.: 1995, Learning algorithms of neural networks, Master’s thesis, Masaryk
University, Brno.

Sojka, P.: 1995, Hyphenation in TEX— Quo Vadis?, TUGboat 16(3), 280-289.

Sojka, P. and Sevetek, P.: 1995, Notes on Compound Word Hyphenation in TgX,
TUGboat 16(3), 290-297.

Zdenék Hlavsa et al: 1993, Pravidla Geského pravopisu (The rules of the Czech
spelling), Academia Praha.

10

Copyright (© 1996, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work

Is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanické 68a

60200 Brno

Czech Republic

