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Abstract

Conformational behaviour analysis produces a sequence of shapes of a mo-
lecule which are only the key points on the entire path. They differ from one
another significantly and an interpolation is necessary to achieve a smooth
visualization. However, standard interpolation techniques cannot be used.
We introduce a hypothesis on the nature of the shape changes and derive an
interpolation algorithm. Conditions required for proper function as well as
some ideas how to overcome the algorithm’s drawbacks are presented.

1 Chemical background

A simulation of conformational behaviour is an important part of computational
chemistry. Unlike reactions this behaviour of a molecule involves changes in the
shape of the molecule (calledgeometryhere) only, bonds are neither created nor
destroyed (thetopologydoes not change).

Among all such possible geometries of a single molecule there are two cate-
gories of special interest

• Conformers(or conformations) are the stable ones in terms of potential
energy—local minima on the potential energy hypersurface.

• Transition statesare those of maximal potential energy on a minimal energy
path connecting two conformers—saddle points on the hypersurface.

Figure 1 shows an example, conformers of propylaldehyde CH3CH2CHO.
Based on the assumption a molecule traverses only some minimal energy path

it can be seen that describing geometries of visited conformers and transition states
is sufficient to describe the entire conformation behaviour. Actually there is a re-
cently developed software system strictly depending on that assumption [1, 2].
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Figure 1: Conformers of propylaldehyde

First all the possible behaviour of the examined molecule is computed offline (tak-
ing upto several weeks of supercomputer time) and then a behaviour is simulated
under certain conditions (temperature, pressure etc.). The resulting sequence of
conformers and transition states is available for further analysis then. With this
approach a global view on the behaviour is achieved in a significantly shorter time
comparing to former strategies which preform the exhaustive energy calculations
online.

We have developed a specialized visualization system [3, 4] for those data.
The visualization itself is fairly straightforward, an animated sequence of 3D di-
agrams consisting of coloured balls and sticks is displayed. In theory the se-
quence of conformers and transitions states is sufficient to uniquely describe the
behaviour. However, the geometries differ so much from one another that it re-
quires, especially in more complex cases, considerable skills and a long experi-
ence of the user in order to be able to observe and understand the essence of the
behaviour. That’s why the visualization doesn’t bring the required effect of an
immediate insight on the data entirely.

Some sort of interpolation between the available data which would at least
approximate the exact behaviour should be introduced then. As the approach used
in the calculation is fairly new current molecular visualization systems (XMOL,
GOPENMOL) don’t perform such an interpolation—there were no data before that
would require it.

2 Key observations

From the previous section emerges that besides the topology we are given a se-
quence of geometries of the examined molecule. The geometries are specified
by Cartesian coordinates of the atoms in this case. An exact calculation of in-
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betweens is not affordable as several steps between a conformer and a transition
state are required and the energy minimization necessary to follow the minimal
energy path takes a time of about a few seconds for each step, even on powerful
hardware. Therefore a computationally less expensive method, an approximating
interpolation, must be used.

Unfortunately, a sequenceA→ B→ A whereA is a conformer andB a tran-
sition state frequently occurs. This is the worst case for a traditional approach
because anything more sophisticated than linear interpolation cannot be applied.
However, a linear interpolation of Cartesian coordinates is not acceptable. Differ-
ences between two subsequent geometries are so great that the interpolation would
cause a distortion which violates energy constraints at the first glance. We would
be faced an animation which doesn’t reflect a real behaviour even intuitively. It
seems the information contained in the Cartesian coordinates themselves is not
sufficient and other information emerging from a deeper knowledge must be ex-
ploited as well.

Looking at the energy constraints, the calculation described in [1], and the
available data more closely we find out that the following holds in vast majority
of cases:

• For each atom the positions of its direct neighbours almost do not change
relatively to one another

• The entire change between two subsequent geometries can be composed1

of elementary rotations

An elementary rotation2 is obtained by splitting the molecule as if a chosen bond
was removed3, keeping one part in a fixed position and rotating the other with
the chosen bond being the axle. In fig. 1 the shape change involves an elemetary
rotation along the horizontal C–C bond by an angle ofπ.

Those are essential observations. We can extract the elementary rotations from
two subsequent geometries, interpolate them linearly, and recreate the inbetweens
on the fly then. Therefore a smooth animation approximating the real behaviour
can be achieved. Almost all real world data can be handled, at least partially if
some of the above two statements is violated in some part of the molecule.

1The meaning of “composition” is somewhat intuitive here. An alogorithm presented in sec-
tion 3.4 shows how it is done.

2The term is introduced only for the purposes of this paper.
3We do not consider cyclic structures yet. See the discussion in section 4.
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3 The algorithm

3.1 Overview

The interpolation between two given geometries is done in two phases

1. A preparational phase executed only once for each pair of subsequent ge-
ometries, just after they have arrived. For each bond an angle expressing the
associated elementary rotation is computed and stored. If the computation
fails zero is substituted.

2. An iterating phase, parametrized by a number iterated between 0 and 1 in as
many steps as is the number of required inbetween frames. Each elementary
rotation’s angle is multiplied with the parameter and the starting geometry
is modified according to new elementary rotations computed in that way.

3.2 Fitting transformation

Before describing the interpolation algorithm in detail some previous results must
be cited. Let two sets{xi}ni=1, {yi}ni=1 of 3D Cartesian coordinates be given and

yi = Rxi + t + ξi

hold for eachi = 1. . .n whereR is a fixed but unknown rotational matrix,t a fixed
unknown vector of transition, andξ some noise (an order of magnitude less sig-
nifficant than the coordinate values).

From the coordinates we can reconstruct such a matrixRand vectort (together
called afitting transformation) that

n

∑
i=1
‖Rxi + t−yi‖

is minimal. Moreover, this can be done efficiently (30 iterations of a loop con-
taining about 80 lines of simple C code—floating point addition, multiplication,
and division only). Our code is based on [5], the method is described in detail
in [3, 4].

3.3 Preparational phase

Figure 2 shows a pseudocode for the phase 1. It takes a topology—graph(V,E)
and two geometriesA,B as its inputs. A valueangle{i, j} is computed for each
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1: colori := WHITE ∀i ∈V
2: colorroot := GREY
3: repeat
4: for i ∈V : colori = GREY
5: colori := BLACK
6: R := fit(A,B, i)
7: B := RB
8: for j ∈V : {i, j} ∈ E, colorj = WHITE
9: if {x∈V : {x, j} ∈ E}= {i}

10: colorj := BLACK
11: angle{i, j} := 0
12: else
13: colorj := GREY
14: n := 0, φ := 0
15: for k∈V−{i} : { j,k} ∈ E
16: φ := φ +∠(AiAjAk,BiBjBk)
17: n := n+ 1
18: end loop
19: φ := φ/n
20: R := rot(Ai ,Aj ,φ)
21: err:=0
22: for k∈V−{i} : { j,k} ∈ E
23: err := err+‖RAk−Bk‖
24: end loop
25: if err/n< LIMIT
26: angle{i, j} := φ
27: else
28: angle{i, j} := 0
29: end if
30: end if
31: end loop
32: end loop
33: until {x∈V : colorx = GREY}= /0

Figure 2: Preparational phase of the interpolation
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bond{i, j} ∈ E. As the graph is unorientedE is a set of unordered pairs. The ge-
ometries are matrices consisting of column vectors of homogeneous 3D Cartesian
coordinates, subscripted notationAi stands for thei-th column.

The skeleton of the algorithm (lines 1–5, 8–10, 12, 13, 30–33) is a version
of breadth first search of a graph. Therefore we preserve the established terms
of WHITEunvisited vertices,GREYthose which should be processed in the next
iteration, andBLACKfinished ones. It can be proven the algorithm terminates after
all vertices have been visited. In the case of acyclic graphs (which we consider
only) this means also all the edges have been traversed. As the BFS is well known
in graph theory we omit a formal proof here, it can be found for instance in [6].

The main idea of the algorithm is based on the above observations. The mole-
cule is being split bond by bond as the BFS runs. For each bond local surroundings
of the two bound atoms are considered, the surroundings are examined whether
they rotate relatively to each other, and if so the angle of rotation is determined.

Let’s focus on essential parts now. In lines 6 and 7 we have already chosen
a GREYvertex i. The functionfit(A,B, i) computes a fitting transformation4 R
such that coordinates of the vertexi and its immediate neighbours are as close
as possible inA and in RB. The geometryB is transformed as a whole then.
Comparing the geometries, determining rotational angles etc. is further possible.
Actually the fitting can be done unambiguously if and only ifi has at least two
distinct neighbours and those are non-collinear with respect toi. For the root this
can be achieved with a careful choice (if not, the molecule would be just a linear
chain). To keep the property ofi across the BFS iterations the algorithm can be
easily extended. For the sake of simplicity we omit the appropriate code in fig. 2.
The problem is marginal anyway.

In line 9 we check whether the next examined atomj is a leaf. If so it
doesn’t make sense to rotate the single atom and zero angle is stored for the
bond i− j. Otherwise a candidate angle of the expected elementary rotation is
computed for eachj ’s neighbour (loop 15–18) and the angles are averaged (nota-
tion∠(AiAjAk,BiBjBk) stands for an angle between the planes given by the point
triplets). The functionrot(P1,P2,φ) computes a matrix of rotation by angleφ with
the lineP1P2 being an axle. If the actual rotation given by the averaged angles
applied on the starting geometry brings all thej ’s neighbours acceptably close to
their ending geometry positions the angle is accepted.

If the computation of an angle fails zero is substituted. Then, during the in-

4As we deal with homogeneous coordinates now the 4×4 matrix covers both the rotationR
and transitiont from section 3.2.
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1: colori := WHITE ∀i ∈V
2: colorroot := GREY
3: Croot := Aroot

4: for i ∈V : {i, root} ∈ E
5: Ci := Ai

6: end loop
7: repeat
8: for i ∈V : colori = GREY
9: colori := BLACK

10: R := fit(A,C, i)
11: C := RC
12: for j ∈V : {i, j} ∈ E, colorj = WHITE
13: if {x∈V : {x, j} ∈ E}= {i}
14: colorj := BLACK
15: else
16: colorj := GREY
17: R := rot(Ai ,Aj ,step∗angle{i, j})
18: for k∈V−{i} : { j,k} ∈ E
19: Ck := RAk
20: end loop
21: end if
22: end loop
23: end loop
24: until {x∈V : colorx = GREY}= /0

Figure 3: Iterating phase of the interpolation

terpolation (see section 3.4) the molecule doesn’t seem to twist by any particular
elementary rotation on the bond at all and the entire effect of the shape change
(more complex than an elementary rotation) turns up on the whole between the
last interpolated frame and the frame exactly derived from the ending geometry.
This causes discontinuities in the visualization but allows dealing with other bonds
correctly. Otherwise we should give up the pair of geometries entirely.

3.4 Iterating phase

The algorithm shown in fig. 3 takes the starting geometryA, computed angles
from the preparational phase, and a numberstepbetween 0 and 1 as its inputs and
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Figure 4: Generated inbetweens

computes an inbetween geometryC according to the value ofstep.
The algorithm has the BFS skeleton again. Coordinates of the root and its

neighbours are taken “as are” from the starting geometry (lines 3 and 5). Then,
bonds are processed in the same manner as during the preparational phase.

In each iteration the BFS together with the initialization ofC guarantee that
we have already computed the current coordinates ofi and all its neighbours. That
assures the fitting performed in lines 10 and 11 on partial current geometry makes
sense.

If j is a leaf (test 13) there is nothing to do, just the starting coordinates are
taken. Otherwise for each neighbour ofj (loop 18–20) we rotate its starting po-
sition alongi− j by an angle computed as the product of the parameter and the
total angle for the bondi− j computed during the preparational phase. The com-
putation can be done easily due to the fitting.

According to the method the first frame (parameter value 0) always coincide
with the starting geometry and, under the assumption we have never failed during
the preparational phase, the last one (parameter value 1) with the ending geometry.
Relatively smooth visualization of discrete shape changes is achieved then.

Let’s look at the fig. 1 again. If the algorithm is given corresponding input data
in the preparational phase a value ofπ is assigned to the horizontal C–C bond, 0
to the others. During the interpolation the parts of the molecule rotate relatively to
each other along the bond. Eventually, if the methyl CH3 rotated as well it would
be detected independently as only local surroundings are considered. That would
result in a composed shape change during the interpolation.

On the other hand a linear interpolation of Cartesian coordinates is unaccept-
able at the first glance even intuitively.

Figure 4 shows a simple but nontrivial example of a real molecule. The first
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and the last geometries had been given, the others were generated with the de-
scribed algorithm. Two elementary rotations are involved in this case, correspond-
ing bonds are pointed by the arrows in the first image.

4 Further research

Currently we can handle about 90% of available data. The rest consists of the
cases where more complex shape changes occur and the concept of elementary
rotation is violated. Proper detection of such cases, their classification, and han-
dling in the algorithm may be a subject to further research.

The presented algorithm is fairly robust against numerical noise present in real
data. However, the actual noise (“noise” from the idealistic point of view which
was inevitable for the interpolation) in our data is a more significant factor. It
covers minor but significant geometry changes. In principle, this does not hurt too
much as they are reflected in the visualization anyway but the discontinuities they
cause are annoying. A sort of factorization of a geometry change into an idealistic
elementary rotations and a residuum and consequent linear interpolation of the
residuum (this should be affordable) instead of ignoring it would be a solution.

Even more annoying is current incapability of handling cyclic topologies. Ac-
tually, a shape-changing cycle is a nightmare as it ignores the concept of elemen-
tary rotations totally, the involved shape changes are more complex (describing
them is beyond the scope of this paper). Currently, we only prevent the algorithm
to compute elementary rotation angles on the bonds which are parts of a cycle.

5 Conclusions

The required interpolation between two subsequent geometries computed by con-
formational analysis presents a challenge. Based on observations of the prevailing
nature of the changes a concept ofelementary rotationswas introduced and an
interpolating algorithm developed. Now it is implemented as a module of a visu-
alization system and used by a group of users. About 90% of real data are handled
satisfactorily, we get a smooth animation. However, there are still unsolved prob-
lems which motivate further research.

Acknowledgement

This work has been supported by the Grant Agency of the Czech Republic, grant
no. 203/94/0522. Many thanks to prof. Jaroslav Koča for the first inspiration
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